Year Type 2025 ISI Publication Autori: Arcidiaco, L.; Danti, R.; Corongiu, M.; Emiliani, G.; Frascella, A.; Mello, A.; Bonora, L.; Barberini, S.; Pellegrini, D.; Sabatini, N.; et al. Rivista: Forests 2025, 16, 754. DOI: https://doi.org/10.3390/f16050754 Abstract: Ink disease, primarily caused by the pathogen Phytophthora xcambivora, significantly threatens the health and productivity of sweet chestnut (Castanea sativa Mill.) orchards, highlighting the need for accurate detection methods. This study investigates the efficacy of machine learning (ML) classifiers combined with high-resolution multispectral imagery acquired via unmanned aerial vehicles (UAVs) to assess chestnut tree health at a site in Tuscany, Italy. Three machine learning algorithms—support vector machines (SVMs), Gaussian Naive Bayes (GNB), and logistic regression (Log)—were evaluated against eight vegetation indices (VIs), including NDVI, GnDVI, and RdNDVI, to classify chestnut tree crowns as either symptomatic or asymptomatic. High-resolution multispectral images were processed to derive vegetation indices that effectively captured subtle spectral variations indicative of disease presence. Ground-truthing involved visual tree health assessments performed by expert forest pathologists, subsequently validated through leaf area index (LAI) measurements. Correlation analysis confirmed significant associations between LAI and most VIs, supporting LAI as a robust physiological metric for validating visual health assessments. GnDVI and RdNDVI combined with SVM and GNB classifiers achieved the highest classification accuracy (95.2%), demonstrating their superior sensitivity in discriminating symptomatic from asymptomatic trees. Indices such as MCARI and SAVI showed limited discriminative power, underscoring the importance of selecting appropriate VIs that are tailored to specific disease symptoms. This study highlights the potential of integrating UAV-derived multispectral imagery and machine learning techniques, validated by LAI, as an effective approach for the detection of ink disease, enabling precision forestry practices and informed orchard management strategies.