

Progetto Finanziato dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare Direzione Generale Protezione della Natura

SOS Bocche di Bonifacio

SOS - Bocche di Bonifacio (2009-2010) DEC/DPN 2291 del 19/12/2008

<u>Cucco A.¹</u>, Ribotti A.¹, Olita A.¹, Fazioli L.¹, Sorgente B.¹, Sinerchia M.¹, Satta A.¹, Perilli A.¹, Borghini M.², Schroeder K.² and Sorgente R¹

¹ Institute for Coastal Marine Environment (IAMC - CNR), Oristano, Italy

² Marine Science Institute (ISMAR - CNR), La Spezia, Italy

A. Cucco

THE BONIFACIO STRAIT (SOB)

Particularly Sensitive Area (PSSA)

Type of vessel	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Total
Oil tanker	29	35	32	22		18	13	18	22	10	210
Chemical tanker	227	198	132	4	4	90	95	65	65	38	1165
Liquefied gas carrier	105	1 05	109	64	35	20	24	16	5	12	495
Supply ship	184	111	97	73	54	47	58	49	55	54	782
Generic cargo ship	1604	1614	1353	1314	1494	1262	1274	1266	1220	1016	13417
Cargo-freezer ship	58	82	89	59	25	22	5	12	18	28	398
Container ship	292	363	424	364	208	112	151	78	183	105	2380
Passenger ship	323	341	239	263	357	374	343	422	420	467	3549
Ro/Ro	261	175	108	222	3	279	190	87	156	- 111	1702
Ro/Ro - Car carrier	86	71	83	90	49	26	71	32	182	73	863
Passenger Ro/Ro	804	917	728	624	869	1012	1200	1157	1146	1 033	9490
Depolluting vessel	47	69	13	6	4	2	2	2	1	0	146
Research vessel	3	9	10	5	9	2	3	10	6	11	68
Dredge ship	0	0	0	0	3	1	L	1	0	0	6
Cable ship	7	6	12	8	13	19	21	19	23	16	144
Pontoon-barge vessel	I.	0	0	0	0	1	2	0	I.	1	6
Tugboat	12	14	7	13	23	13	20	21	16	7	146
School vessel	0	0	2	5	1	0	3	0	L.	0	12
MY Charter	1	0	0	11	190	5	0	2	0	0	209
Total	4044	4110	3438	3257	3599	3305	3476	3457	3520	2982	35188

The Strait of Bonifacio is a natural international reserve (FR & IT).

The Strait is crossed every year by more than 3500 vessels exceeding 300 tons GT (VTS data)

Yearly, about 1 oil-spill event occurs

A. Cucco

THE BONIFACIO STRAIT (SOB)

Particularly Sensitive Seas Area

SOS - Bocche di Bonifacio (2009-2010)

funded by the Italian Ministry of Environment DEC/DPN 2291 del 19/12/2008

IMPLEMENTATION OF INTEGRATED OPERATIONAL SYSTEM FOR MANAGING OIL-SPILL EMERGENCIES IN THE SOB ...

- •.. by preventing and/or limiting the damages.
- •.. by facilitating the local authorities to plan and coordinate the response operations.
- •.. by creating "scenarios and risk maps" used to quickly prepare appropriate intervention strategies

A. Cucco

 Implementation of an operational forecasting system: Bonifacio Oil spill Operational Model (BOOM)

 Measurements and analysis of the surface transport paths and 3D water currents fields in the SOB area

 Calibration and validation of BOOM system throughout comparison with measured data.

• Implementation of graphical user interface (GUI) to guarantee the accessibility, usability and the interaction with the BOOM

THE OPERATIONAL SYSTEM OVERVIEW

THE BOOM CORE

BOOM

a coupled 3D hydrodynamic and wave model (SHYFEM3D-WWM), a Lagrangian trajectory module and a weathering module (FEMOIL) based on finite elements method (www.seaforecast.cnr.it).

nested to a regional open ocean forecasting system based on a finite difference hydrodynamic model **(WM ED)** (www.seaforecast.cnr.it).

surface boundary conditions provided by **SKIRON** meteorological forecasting system (<u>http://forecast.uoa.gr)</u>

GUI to predict oil spill fate within 72 hours time lag both in the past (**backward simulation**) or in the future (**forward simulation**).

THE BOOM CORE

THE MODEL FRAMEWORK

[1] 3D HYDRODYNAMIC MODEL

[2] WIND WAVE MODEL - WWM

[3] TURBULENCE CLOSURE MODEL- GOTM

[4] 3D EULERIAN TRANSPORT & DIFFUSION MODEL

[5] 3D LAGRANGIAN TRANSPORT & DIFFUSION MODEL

[6] 3D SEDIMENT TRANSPORT MODEL - SEDTRANS05

[7] 3D WATER QUALITY MODEL - BFM

IAMC - Institute for Marine Coastal Marine Environment, Oristano unit

SHYFEM3D-WWM

OIL SPILL MODELLING WITH

PROCESS	METHOD				
Advection	Eulerian velocity+ wind Stokes Drift	& wave			
Diffusion	Fick Law				
Dynamical Spreading	Fay (1976)				
Emulsification	Mackay et al. (1982)				
Evaporation	Stiver and Mackay (1984)				
Type of spilling	Istantaneous or continuos spilling				
Oil-land interaction	Total Entrapment	Contract State			
EVAPORATION					
		BIODEGRADATION			
		SEDIMENTATION			
HOUR DAY					

FEMOIL

THE MODEL SET-UP

THE HYDROD YNAMIC MODEL DOMAIN IS REPRODUCED BY MEANS OF UNSTRCTURED FE MESH WITH SPAT. RES. VARYING BETWEEN 50 TO 500 m OF THE SOB AND LA MADDALENA ARCHIPELAGO

NESTING WITH WMED OPERATIONAL SYSTEM

THE MODEL SET-UP

• 3D SHYFEM VERSION

• NESTING WITH STRUCTURED GRID OPERATIONAL OCEANOGRAPHIC MODEL – MFSTEP OPERATIONAL SYSTEM

FROM

Free Surface Finite differences Arakawa C grid Structured Grid s layers

TO Free Surface Finite Elements Arakawa B grid Unstructured Grid Z layers

CURRENT PROFILES

Two field campaigns (2008- 2009) ADCP measurements inside the Strait area and La Maddalena Archipelago.

SURFACE TRANSPORT

11 GSP and satellite Lagrangian buoys released in different weather conditions and locations in the Strait area and in the La Maddalena Archipelago (2009-2010)

A. Cucco

IAMC - Institute for Marine Coastal Marine Environment, Oristano unit

IAMC - Institute for Marine Coastal Marine Environment, Oristano unit

DISTANCE BETWEEN OBSERVED AND SIMULATED TRAJECTORIES AS A FUNCTION OF THE BACKWARD (LEFT) AND FORWARD (RIGHT) PREDICTION TIME. MEAN VALUE (LINE) AND STANDARD DEVIATION (SHADED AREA) ARE REPORTED.

OPERATIONAL PRODUCTS

WEB SERVISES

IAMC - Institute for Marine Coastal Marine Environment, Oristano unit

IAMC - Institute for Marine Coastal Marine Environment, Oristano unit

A. Cucco

ON DESK SERVICES

OIL SPILL FORECASTING BY MEANS OF GRAPHICAL USER INTERFACE

IAMC - Institute for Marine Coastal Marine Environment, Oristano unit

SCENARIOS & RISK ANALYSIS

SCENARIO 3A

SCENARIOS & RISK ANALYSIS

SUPPORT TO EMERGENCIES

PORTO TORRES OIL SPILL EVENT 10 - 01 - 11

High density oil spilled during transfering operation from oil tank to P.Torres harbour bunker

A. Cucco

SUPPORT TO EMERGENCIES

Progetto Finanziato dal Ministero dell'Ambiente e della Tutela del Territorio e del Mare Direzione Generale Protezione della Natura

SOS Bocche di Bonifacio

P.TORRES OIL SPILL EVENT SIM. RESULTS

•Continuous release of high density hydrocarbons.

•Started the 10-01-11 at 10:18 PM

•Ended 11-01-11 at 4:06 PM.

•About 20 hours of spilling.

•Total oil spilled estimated about 40 m³

P.TORRES OIL SPILL EVENT SIM. RESULTS: COMPARISON WITH OBSERVATIONS

Figure 8

Cucco A., Sinerchia M., Ribotti A., Olita A., Fazioli L., Sorgente B., Perilli A., Borghini M., Schroeder K. Sorgente R., A high resolution real time forecasting system for predicting the fate of oil spills in the Strait of Bonifacio (western Mediterranean), (2012), *Marine Pollution Bulletin. In press.*

Olita, A., Cucco, A., Simeone, S., Ribotti, A., Fazioli, L., Sorgente, B. and R. Sorgente (2012). Oil spill hazard and risk assessment for the shorelines of a mediterranean archipelago, *Ocean and Coastal Managment*, *57*, pp. 44-52

Sorgente, B., Sorgente, R., Olita, A., Fazioli, L., Cucco, A., Perilli, A., Sinerchia, M. and A. Ribotti (2012). Effect of protection rules and measures in a important International strait area: the Bonifacio Strait. *Journal of Operational Oceanography, Volume 5 No I, pp. 35-44.*

Cucco, A., M., Ribotti A., Olita A., Fazioli L., Sorgente B., Perilli A., Borghini M., Sinerchia ,M., Schroeder K. Sorgente R, Oil spills prediction in the Bonifacio strait area, western Mediterranean. *Under review in Ocean Science*

A. Cucco

THANKS FOR YOUR ATTENTION

3. MODELLISTICA CORRENTE BAROTROPICA BOCCHE DI BONIFACIO

MODELLO IDRODINAMICO BAROTROPICO 3D CON GRIGLIA DI CALCOLO ESTESA A TUTTO IL SOTTOBACINOCON ELEVATA RISOLUZIONE PER L'AREA DI INDAGINE

Depth [km]

INIZIAMO CON 2D BAROTROPICO

$$\frac{\partial U}{\partial t} - fV + gH \frac{\partial \zeta}{\partial x} + \frac{1}{\rho_0} \frac{\partial p_{atm}}{\partial x} + \frac{\tau_{xb}}{\rho_0} - \frac{\tau_{xw}}{\rho_0} = \frac{F_x}{\rho_0 H}$$

$$\frac{\partial V}{\partial t} + fU + gH \frac{\partial \zeta}{\partial y} + \frac{1}{\rho_0} \frac{\partial p_{atm}}{\partial y} + \frac{\tau_{yb}}{\rho_0} - \frac{\tau_{yw}}{\rho_0} = \frac{F_y}{\rho_0 H}$$

$$\frac{\partial \zeta}{\partial t} + \frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0$$

$$2D \text{ Barotropic}$$

OPERATIONAL SET-UP

WHERE

 $\tau_{\rm b}$ = bottom stress

 ρ_0 = water density

 $H = \zeta + h$ (total level)

 τ_w = wind stress

 $\zeta = surge$

3. MODELLISTICA

HYDRODYNAMIC: Time step: 300 s (adaptive) FORCING:

- Meteorological data
- Tide at Gibraltar Strait
- Body + earth + load tides
 - 4 diurnal (K1, O1, P1, Q1)
 - 4 semidiurnal (M2, S2, N2, K2)

U

=

=

udz

vdz

• 3 long term (Mf, Mm, Ssa)

3. MODELLISTICA CORRENTE BAROTROPICA STRETTO DI BONIFACIO

 CUCCO A

