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“Many a little makes a mickle”

the cooperative data collection for data assimilation,
 i.e. how to accumulate small pieces of information without wasting them

Riccardo Benedetti
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Meteo-marine data from a (potential) collaborative fleet 

FromFrom AIS  AIS data visualized by Marinetraffic.com:data visualized by Marinetraffic.com:
All vesselsAll vessels, on 28 August 2012 at about 16:00 (local time), on 28 August 2012 at about 16:00 (local time)
Total number of vessels in the scene: Total number of vessels in the scene: 504504

On board sensors for: temperature (air and sea water), pressure, wind speed
and direction, position (GNSS), humidity ...
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Data assimilation perspective  

On board observations and data assimilation for NWP 

Cooperative data features

➢ Nearly continuous sampling

➢ Sea coverage

➢ Large amount of data

➢ Observations from heterogeneous  
not calibrated instruments

➢ Fragmentary character of       
information

Problem: a quantitative (not so 
large) observation error is 
required  

Not a problem  

Added value  

Not a problem  

Problem: combination of many 
pieces of information from 
different sources 

No information can be wasted, all the information has to be elaborated
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“Many a little makes a mickle”: from money to information 

The old Scottish proverb is clear when applied to money (additive quantity):

It should be also valid for the pieces of information: the evidence from a large 
number of observations is expected to be stronger than that from any single 
experiment.

“Molti indizi fanno una prova” (“many clues make a proof”)... 

But how to combine evidence from different sources?
Intuition and common sense are not enough... 
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A naive approach (or fraud) with disastrous consequences 

Example - Ship routing: NEW method versus OLD method comparison.

Or not? 

The new method is better 
without reasonable doubt!

=
Experiment A (e.g. on summer) 

+
Experiment B (e.g. on autumn) 

A+B (pooling the data) 

The old method was better...

What is going wrong in pooling A and B data?

The old method was better...
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R1:T={R1 ,R2 ,... RT }time series of results (failure=0/success=1) for the method under test
S=number of successes in R1 :T

Sq="the probability of success for the method under test is q " 
I=prior information (i.e. before the test results are known)

A naive approach (or fraud) with disastrous consequences 

p (S q∣R1 :T I )=?

p (S q∣R1 :T I )=p (S q∣I )
p(R1:T∣Sq I )

p (R1 :T∣I )
∝

normalisation constant

prior
(e.g. uniform)

p (Ri∣S q I )={ q if Ri=1
1−q if Ri=0

qS(1−q)T−S

Commutative product of T factors, always the same for any given S! But...
001000100000100 111011110101101 ≠ 101110010100101 100101000110101 

A B

p (S q∣I ) p (R1∣S q I ) p(R2∣R1S q I ) ... p(RT∣R1 R2 ...RT−1S q I )=

p (S q∣I ) p (R1∣S q I ) p(R2∣S q I ) ... p(RT∣S q I )
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How to make the analysis sensible to the data sequence 

“I beseech you, in the bowels of Christ, think it possible that you may be 
mistaken”              Oliver Cromwell to the synod of the Church of Scotland – 1650

According to the “Cromwell principle” we have to consider the possibility that:

E="An extra factor changing in unknown way the probability q  of success is present"
p (S q∣R1 : tEI )= p(Sq∣I )   (uniform distribution)                  

p(Sq∣R1: t+1 I )∝ p(Sq∣R1 : t I ) p(Rt+1∣S q I )=
=[ p(S qE∣R1 :t I )+p (S q Ē∣R1 : t I )] p (Rt+1∣S q I )=

[ p(E∣R1 :t I ) p(S q∣R1 :t E I )+p (Ē∣R1 : t I ) p (S q∣R1 : t Ē I )] p(Rt+1∣S q I )

(1− f )

p (S q∣R1 : t+1 I )∝[ f p(Sq∣I )+(1− f ) p (S q∣R1 :t I )] p (Rt+1∣Sq I )
Recursive formula:

For f=0 we get the previous binomial distribution, but even for low values of f...

f p (S q∣I )
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A probability distributions “race”: the winner is... 

Old method in blu

New method in red

Two completely different final 
results and sensitivities to data!
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From a simple example to a more complex application... 

Some complications for the cooperative data:

1. No binary results, all the instrument responses are possible

2. The extra factor to be considered is the possible instrument 

malfunctioning

3. The prior to be used for the observations is given by the forecast values, 

never uniformly distributed

4. The computational effort to manage probability distributions instead of 

single values is severe (in some cases prohibitive)

5. In operational conditions the available time for all the elaboration is short 

(a few hours)

Anyway the rules of Probability Theory and Inference remain the right tools 

to manage information in a logically consistent manner 
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Goal: find a computable expression for the probability density p(y|ỹA), where 
A denotes all the available auxiliary information (instrument features, measure 
time and location, climatology, etc.)

prior for y
(e.g. known by forecast)

Probability of
functioning
instrument

instrument response 
distribution (e.g. known by 
calibration or specification) malfunctioning 

instrument 
response 
distribution 

Uncertainty estimation for cooperative data 

ỹ="the measure result for the measurand Y is ỹ "
y="within a dy y  is the actual value of the measurand Y"
C="the instrument measuring Y works correctly" (functioning)
C̄="the instrument measuring Y does not work correctly" (malfunctioning)

p ( y∣ỹ A)= p( yC∣ỹ A)+ p( y C̄∣ỹ A)
by product rule and
Hp1: p ( y∣CA)= p( y∣A)=p( y∣C̄ A)
Hp2: p ( ỹ∣y C̄ A)=p ( ỹ∣C̄ A)

p ( y∣ỹ A)∝[ P(C∣A)

1−P(C∣A)
p ( ỹ∣yC A)

p( ỹ∣C̄ A)
+1] p( y∣A)
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Some nice (and useful) properties of this formula:
☺ It automatically collapses to the prior p(y|A) when the instrument 
is almost surely broken, i.e. P(C|A)→0, and to the usual posterior 
probability when it surely works correctly, i.e. P(C|A)→1
☺ It weights properly any intermediate case, allowing the 
exploitation of each single result and avoiding the necessity of 
rejecting it when the probability of malfunctioning exceeds some 
arbitrary threshold
☺ For any P(C|A) it automatically tends to the prior when the 
measure result is largely implausible 
☺ It easily accounts for possible malfunctioning warning flags (e.g. 
ỹ = -9999), simply assigning zero value to p(ỹ=flag|yCA) (or very a 
large value to the malfunctioning instrument response)

Uncertainty estimation for cooperative data 

p ( y∣ỹ A)∝[ P(C∣A)

1−P(C∣A)
p ( ỹ∣yC A)

p( ỹ∣C̄ A)
+1] p( y∣A)
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Uncertainty estimation for cooperative data 
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Conclusion 

“To make a mickle from many a little, save your money
 and don't waste the collected data!”

Thank you for your attention
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