GPS-ZTD and radar data assimilation using a convection permitting WRF 3DVAR-RUC configuration

Thomas Schwitalla and Volker Wulfmeyer

Institute of Physics and Meteorology (IPM)

University of Hohenheim (UHOH)

Stuttgart, Germany

Outline

- Variational data assimilation techniques in Numerical Weather Prediction (NWP)
- Remote sensing data for nowcasting applications: GPS & Radar
 - Assimilation of GPS & Radar in WRF
- Summary
- Outlook

Why data assimilation?

Some aspects of data assimilation

- Think about crossing the street this is data assimilation!
 - Estimating the current state using observations and your background
- A classical method is the Four-dimensional data assimilation (e.g. applied for the operational COSMO models)
 - Model fields are adjusted by adding a weighting term to the prognostic equations
 - Allows only assimilation of model's "prognostic observations"
- More recent methods are deterministic variational schemes like 3DVAR and 4DVAR
 - Use observation error matrices (R)
 - Include model background errors representing meteorological and model variability (B)
 - Allow non-prognostic observations (Radar, GPS, radiances...)
 - Uses the (full) forecast model in case of 4DVAR

Some aspects of data assimilation (2)

- Requires a forward operator (H) and its adjoint
- New initial state (<u>x</u>) is determined by minimizing a "cost function" (J), describing differences between observations (<u>y</u>) and background (<u>x</u>_b)

$$J(\underline{x}) = \left(\underline{x} - \underline{x}^{b}\right)^{T} \underline{\underline{B}}^{-1} \left(\underline{x} - \underline{x}^{b}\right) + \left(\underline{y} - H(\underline{x})\right)^{T} \underline{\underline{R}}^{-1} \left(\underline{y} - H(\underline{x})\right)$$

- **B** would be a 10⁷x10⁷ matrix, therefore control variables are introduced to reduce the size of B to 10⁷ elements
- **R** is usually a diagonal matrix describing the observation errors. Cross correlations are neglected (except for high-resolution satellite data).
- 3DVAR rapid update cycle (RUC) used by several meteorological centers
- High-resolution 4DVAR is often in development state
- Requires lots of computing resources

3DVAR Methodology

In a 3DVAR RUC, the full complex model can be applied between the assimilation steps, but *B* matrix remains constant and the adjoint of *H* required.

Some informationsabout **B**

- **B** must spread information both vertically & horizontally with proper weights to observations and first guess.
- Contains correlations and cross correlations between control variables

WRF model setup

- Convection permitting resolution of 3km
- 691*682*57 grid boxes (COSMO-IT 502*604*50@2.8km)
- Two-Moment microphysics
- Digital Filter initialization
- New vegetation fraction from MODIS
- Boundaries from ECMWF
- Shallow convection
- 3DVAR RUC
- Simulations are performed on a Cray XE6/XC30 system using 960 cores

Rapid Update Cycle approach with WRF used at IPM

Available observations

- Conventional observations (SYNOP, AMDAR, TEMP...)
- MSG Atmospheric Motion Vectors from IR, WV and HRV channels
- QuickScat sea winds (12.5km resolution)
- GPS-ZTD data (~950 stations in our domain, over land only!)
- Radar radial velocities and reflectivities (only French and German data used -> OPERA?)
- Satellite radiances from polar orbiting satellites (HIRS, AMSUA/B, AIRS, IASI, MHS)
- Raman Lidar data (experimental)
- Conventional observations are obtained via the ECMWF MARS
- AMV and QSCAT data are retrieved from EUMETSAT UMARF archive
- GPS-ZTD are downloaded from EGVAP
- Radar data have been received directly from Météo France and DWD during COPS
- Satellite data are received from the NCEP archive (dss 735.0)

GPS data assimilation

- Water vapor information can be derived from GPS by measuring the signal delay between satellite and receiver
- GPS provides data with large spatial coverage and high time resolution (15 minutes) under all weather conditions.
- A large impact of GPS data assimilation on the improvement of the initial water vapor field is expected.
- Complex STD operator required for low elevations

GPS-ZTD data assimilation experiment

COSMEMOS workshop, Leghorn 2013

GPS-ZTD data assimilation experiment (2)

STAT HOUSE

STD difference model-observation

Radar data coverage during COPS

15 Doppler radar in total
10 from France
5 from Germany
S- and C-Band radars
Scanning radius up to 250km
Range resolution 1km
R^u_{max} = 60m/s and 32m/s
3D volume data

Mostly NO clear air data!

Assimilation of radar data in WRF

Radial velocity assimilation:

$$v_r = \frac{x - x_i}{r_i} \cdot u + \frac{y - y_i}{r_i} \cdot v + \frac{z - z_i}{r_i} \cdot (w - v_T)$$

Terminal velocity v_T represents the fall speed of rain. It depends on the rain water mixing ratio q_r under the assumption of a laminar flow ($R_e \approx 300$).

Reflectivities (dBZ) are assimilated applying the following operator:

$$Z = 43.1 + 17.5 \log \left(\frac{\rho_{air} q_r}{1 kg / m^3}\right)$$

Derived from a Marshall-Palmer distribution with $N_0 = 8*10^6 m^{-4}$

Only based on rain water mixing ratio!

Quality control and data thinning

Raw observations amount is too large and data are noisy

Data thinning and filtering prior to its use in a data assimilation scheme

Applied filtering procedure for e.g. German radar data:

- 1) According to quality flags, the raw observation is set to missing value
- 2) Calculation of a 3x3 average value
- 3) Calculation of variance for every raw observation
- 4) Variance rejection threshold 50dBZ² for reflectivity and 60m²/s² for radial velocity (Xiao, WRF Workshop 2008)
- 5) Additional smoothing along the ray and azimuth

Radial wind observation error = f(range) Reflectivity error set to 5dBZ Reflectivities are discarded above 4000m AGL

Quality control and data thinning

11°

51°

50°

49°

48°

51°

50°

49°

48°

n 1818 n

11°

dbZ

45

40

35

30

25

20

15

10

5

0

11°

11°

m/s

30

25 20 15

10 5

0

-5

-10

-15

-20 -25 -30

WRF RUC and Radar DA during COPS IOP10

Improvement of precipitation nowcasting after RUC from 6-9 UTC:

Promising reduction of precipitation bias by 50 %. Improvement of

23. spatial distribution (Schwitalla et al. submitted to Meteorol. Z. 2013).

Integrated (Ensemble) Simulation Model

Summary

- Setup of a unique WRF Rapid Update Cycle over central Europe applying a convection permitting resolution
- Beneficial impact of GPS-ZTD data
- First steps to assimilate 3D volume radar data from two different networks with WRF over Europe
- Results are promising, but still deficiencies due to model imbalances, deficits in clear air dynamics
- Quality issues of reflectivities bias correction or new Z-q_r relation required to adopt for European radar systems?

Outlook

- Harmonize radar data quality and interpolation procedures
 - → OPERA European radar data base (work in progress)
- Utilize polarization radar data (www.caos-project.de)
- Comparison of 3DVAR-RUC and 4DVAR (challenging....)
- Testing (hybrid) ensemble data assimilation methods (EnKF, 3DVAR-ETKF, Ensemble-3DVAR)
- Use of MODE-S aircraft data (Clear air data!)
- Incorporate GPS slant total delays to further improve the water vapor fields
- GPS data over the Ocean?

