UV monitoring in Florence

IBIMET/LaMMA Consortium

Experimental field to study the effect of UVB increase on plants (1994)

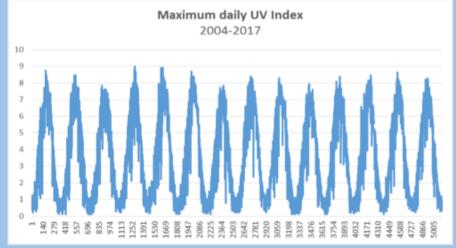
COST Action 713: UVB Forecasting (1996 – 2001)

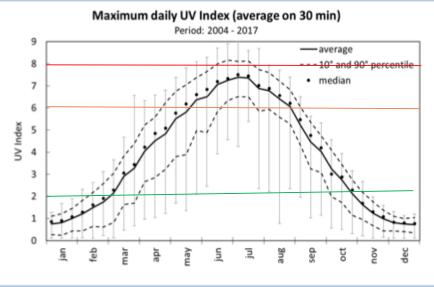
COST Action 726: Long term changes and climatology

of UV radiation over Europe (2004-2009)

COST Action: UV4GROWTH

Calibration


One of our instruments partecipated to the intercalibration at World Radiation Center (WRC) in Davos: 2006, 2017



Solar Light 501 Spectral response close to Erythema

Monitoring

Calibration

Example of calibration matrix obtained from Davos calibration center calibration centre. Each coefficient is specific for Stratospheric Ozone value and Solar Zenith Angle. It is performed botha a spectral and an angular

calibration

\smile	-			\mathbf{U}													-
SZA	TO ₃	200	220	240	260	280	300	320	340	360	380	400	420	440	460	480	500
1324	_	1 081	1.063	20.10	1.036	1 025	1.017	1.011	1.005	1.001	0.998	0.996	0.995	0.995	0.996	0.997	0.999
	5	1	11000	1.010	1.035	1.025	1.017	1.010	1.004	1.001	0.998	0.996	0.995	0.995	0.996	0.997	0.999
	10	1.078	1.060	1.045	1,033	1.023	1.015	1.009	1.004	1.000	0.997	0.996	0.995	0.996	0.996	0.998	1.000
	15	1.074	1.057	1.042	1.031	1.021	1.014	1.008	1.002	0.999	0.997	0.996	0.996	0.996	0.997	0.999	1.001
	20	1.069	1.052	1.038	1.027	1.018	1.011	1.006	1.001	0.998	0.996	0.996	0.996	0.997	0.999	1.001	1.004
	25	1.062	1.046	1.033	1.023	1.014	1.008	1.003	0.999	0.997	0.996	0.996	0.997	0.999	1.001	1.004	1.007
	30	1.054	1.039	1.027	1.018	1.010	1.005	1.001	0.998	0.997	0.997	0.998	0.999	1.002	1.005	1.008	1.012
	35	1.046	1.032	1.021	1.012	1.006	1.002	0.999	0.997	0.997	0.998	1.000	1.003	1.006	1.010	1.015	1.02
	40	1.036	1.023	1.014	1.007	1.003	1.000	0.999	0.998	0.999	1.002	1.005	1.009	1.013	1.018	1.024	1.03
	45	1.026	1.015	1.008	1.003	1.000	1.000	1.000	1.001	1.004	1.008	1.013	1.018	1.024	1.031		-
	50	1.016	1.008	1.003	1.001	1.001	1.002	1.005	1.008	1.013	1.018	1.025	1.032		1110110		
	55	1.008	1.004	1.002	1.002	1.005	1.009	1.014	1.019	1.027	1.035	1.044	1.053	1.063	1.074	1.084	-
	60	1.004	1.003	1.005	1.009	1.015	1.023	1.031	1.040	1.050	1.061	1.073	1.085	1.097	1.110		
	65	1.006	1.010	1.017	1.025	1.036	1.047	1.060	1.072	1.086	1.100	1.115	1.131	1.146	1.162		
	70	1.018	1.029	1.041	1.056	1.071	1.088	1.105	1.122	1.140	1.159	1.178	1.197	1.217	1.23	6 1.25	
1	75	1.049	1.067	1.087	1.108	1.130	1.153	1.176	1.197	1.221	1.245	1.268	1.292	2 1.316	1.33	9 1.36	
1	80	1.108	1.135	1.164	1.193	1.223	1.252	1.282	1.309	1.338	1.367	1.395	1.42	3 1.451	1.47	8 1.50	
1 :	85	1.210	1.246	1.283	1.320	1.356	1.392	1.427	1.458	1.492	1.524	1.557	1.58	3 1.618	3 1.64	7 1.67	6 1.7
1			1.316	1.352	1.388	1.424	1.460	1.495	1.525	1.559	1.593	3 1.625	5 1.65	7 1.68	7 1.71	7 1.74	6 1.

The periodical calibration of such radiometer represent a critical point for this type of measurements. It is suggested to repeta a calibration every year because the spectral response of the used filters is very sensible to the useage time

Photochemical & Photobiological Sciences

FORUM

UV Index monitoring in Europe

Cite this: Photochem. Photobiol. Sci., 2017, 16, 1349 Alois W. Schmalwieser, at Julian Gröbner, Mario Blumthaler, Barbara Klotz, Hugo De Backer, David Bolsée, Rolf Werner, Davor Tomsic, Ladislav Metelka, Paul Eriksen, Nis Jepsen, Margit Aun, Anu Heikkilä, Thierry Duprat, Henner Sandmann, Tilman Weiss, Akkis Bais, Zoltan Toth, Anna-Maria Siani,

In a recent paper Alois Shmalwieser has collected all the locations where uv is monitored in Europe. Now his intention is to collect all real time data in a common web page. In September it will be held a conference in Wien (UV MONITORING IN EUROPE) were also this point will be discussed. In that occasion also a standardization of the measurements will be considered.

Characterization of UV radiative regime

snow

construction site

quarry

beach

vineyards

Together with Tuscany Region and with the Institute for Cancer Prevention we are partecipating to some activity to inform occupational doctors to prevent UV damage in Outdoor Workers.