

The Global Drifter Program: " Operations and Scientific Applications Luca Centurioni PI and Director of the GDP Scripps Institution of Oceanography La Jolla, California, USA Icenturioni@ucsd.edu

The Global Drifter Program (GDP)

The GDP is a semi-operational oceanographic program:

- The GDP maintains an array of1,250 drifters (nominal);
- The GDP has a meteorological component (Sea Surface Pressure, wind, SST, and a air-deployable hurricane array);
- The GDP reached is full implementation in September 2005.

The GDP benefits from international co-operation

- The GDP is a component of the Global Ocean Observing System of NOAA and a scientific program of the Data Buoy Cooperation Panel (WMO-IOC);
- Several countries contribute to the success of the program.

The GDP is a scientific program

- A very large number of papers based on drifter data have been published;
- The GDP continuously seeks and fosters the development and the implementation of other sensors such as sea surface salinity and wind velocity.

Global Drifter Program Management Structure

- 1) SIO (Centurioni) procures over 90% of the GDP drifters, oversees the technology, develops new drifters, maintains an enhanced global surface currents dataset and uses drifter data for research.
- 2) AOML (Lumpkin) organizes the global deployments, manages the real-time data, performs quality control, compiles performance statistics and uses drifter data for research.

The Global Drifter Program: the instruments

THE WORKHORSE: THE MINI SVP (VELOCITY AND SST ONLY)

Mini SVP technical specs:

- •Spherical ABS float, 38 cm diameter;
- •Tether made of polyurethane impregnated wire;
- •Holey sock drogue (length ~ 5m);
- •Strain relief (carrots of urethane);
- •SST (thermistor +- 0.1-0.05 °C);
- Drogue on/off sensor (strain gauge,)
- •ARGOS telemetry and fixing (acc: 150 1000 m)
- Iridium with GPS
- •Drag area ratio (= $C_{Ddr} d_{dr} h_{dr} / C_{Doth} A_{oth}$) ~ 40;

The Global Drifter Program: goals

Provide accurate measurements on a global scale of:

- Horizontal velocity at 15 m depth;
- Accurate Sea Surface Temperature;
- Atmospheric Pressure;

Provide real-time data and delayed-mode quality-controlled data for:

- Operational tasks;
- Scientific research;

Key Areas of Operational Applications

Drifter SST is fundamental for satellite SST Cal/Val to keep bias below 0.5°C;

Atmospheric pressure from drifters is assimilated in NWP systems and is shown to be most important in the 12-48h forecast (source ECMWF and MeteoFrance);

Atmospheric pressure from drifters provides inverse barometer corrections for satellite altimetry data.

Example of state-of-art scientific applications 1/4: General Ocean Circulation

Drifter observations are sparse in space and time due to their Lagrangian nature. As a result bin-averaged drifter velocity are a biased estimator of the meanvelocity field.

$$V = V_{gm} + AV'_g + B\frac{W}{\sqrt{f}}$$

where V_{gm} (unbiased mean geostrophic current) V'_g (geostrophic current from AVISO SLA) W (wind) and f (Coriolis parameter).

Find V_{gm} , **A** and **B** by minimizing cost function *E* for each grid,

$$E = (V - V_D) X (V - V_D)^*$$

where V_D is drifter velocity.

Operational Current Map

Zonal, unbiased geostrophic velocity (-10,+10 cm/sec)

1992-2002 mean near-surface zonal geostrophic velocity, cm/s

Unbiased Geostrophic Velocity

Unbiased Total (geostrophic + Ekman)

Example of state-of-art scientific applications 2/4: Freshwater cycle

Mean Sea Surface Salinity

SEACATs on SVP-B drifters

Tracking System	Location accuracy	Overall length	Depth at the drogue center	Life-span	Sea surface conductivity	Sea Surface temperature
Argos III & GPS	300-1000 m (Argos) 5m, 2DRMS (GPS)	~19 m	15.	> 2 years	0.0003 S/m	0.002℃

SPURS experiment on SSS

SPURS (2012-2013) – 87 GDP salinity drifters will be deployed around location A

Existing large scale near-surface Salinity data

- 3500 Argo floats (floats surface every 10 day and provide one salinity data-point at 5 m depth) provide 350 obs/day globally;
- SPURS drifters (87) will each provide ~12 observations per day (1044 obs/day) in spurs domain (~1000 km X 1000km) and beyond as they disperse in the Atlantic Ocean;

Example of state-of-art scientific applications 3/4: Western Boundary Current Observing System

Kuroshio intrusions onto the ECS continental shelf

Westward propagating cyclonic eddies are correlated with KC intrusions

Mean state of intruding KC current

Eddy/jet transfer of cyclonic vorticity?

Example of state-of-art scientific applications 4/4: Drifters for Tropical Cyclones Research

Air-Deployment by 53rd Hurricane Hunter Squadron of Air National Guard

Deployments ahead/in the wake of tropical cyclones

Drifter Deployments in Hurricanes (6) and Typhoons (4), 2003-2010

Name	Date	CAT max	CAT drifter	Dist min	N Drifter (deployed)	N Temperature subsurface
Fabian	9/04/2003	4	3	48 km	11 (16)	
Frances	9/01/2004	4	4	30 km	38 (39) + 29	
Rita	9/23/2005	5	4	12 km	20 (20)	8
Dean	8/20/2007	5	5	30 km	12 (12)	8
Gustav	9/01/2008	4	2	13 km	12 (12)	6
Ike	9/12/2008	4	2	3 km	8 (9)+12	5
Hagupit	9/21/2008	4	1	14 km	11 (12)	6
Jangmi	9/27/2008	5	5	18 km	11 (12) + 11	9
Fanapi	9/17/2010	2	1	4 km	48(53)	39
Malakas	9/29/2010	2	-	Wake	12(12)	6

•Wind speed from ambient noise (WOTAN) (2003-2009)

•Wind speed sensor from Gill sonic anemometer (2010-)

•93% success rate

Typhoon Fanapi

Deployments: Pre-Storm 9/16/2010 23Z(6.0days), Wake 1 9/19/2010 Z(4.0days), Wake 2 9/20/2010 Z(2.8days), Wake 3 9/22/2010 Z(0.8days)

Cold Wake & Wind Observations from the ADOS Array

ADOS SST in FANAPI, days 260.0-263.0= 3.0, 9/17- 9/20/2010, Nsst=1803

SST observations from the eight ADOS drifters deployed ahead of typhoon Fanapi on Septe mber 17, 2010. SST changes during first 3 days after Fanapi passed over the ADOS drifters a re shown. The vectors represent wind directions. For clarity, only every third wind vector is plotted. The data are plotted in storm co-ordinates, i.e. referred to the center of the storm. Th e storm is advancing approximately from east to west.