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A probabilistic approach in GNSS meteorology from ground stations

The dynamic of water vapour (WV) concentration and its status changes in the atmosphere are well known key factors affecting the 
heat energy fluxes and, consequently, the atmospheric stability and the development of precipitating systems. Quantity and quality 
of WV measurements influence the weather forecasts, and particularly on now-casting and short term predictions. WV time series 
measurements have also a role in climatology, being WV a main greenhouse gas. The capability of providing information on the 
atmospheric state and specifically on WV quantities has imposed GNSS data as a fundamental source of information in 
meteorology, due to the high number of GNSS signals, and the low cost receiving stations, which are increasing. However the 
exploitation of all these upcoming benefits could be limited by the errors hidden in the number of assumptions made in the GNSS 
data processing. This aspect is reflected by the common absence of error evaluations for the retrieved atmospheric parameters, if 
not for average posterior estimations, resulting from validation analyses. All this can show up as a non-trivial issue, because the 
increasing relevance of meteo GNSS products is also for model assimilation, now at different scales, where a precise error 
estimation is mandatory. 
Other, somehow related, open questions are on the amount of information that can be really gained by increasing the number of 
receiving stations in a given area, the number of received (and processed) signals or the signal precision.
Here we want to primarily address the issue of the accuracy estimation in GNSS meteorology. This is achieved through a novel 
Bayesian algorithm that is designed to retrieve tropospheric parameters from ground measurements of temperature, pressure, 
humidity and GNSS signal delays. The algorithm produces posterior probability distributions (hence the uncertainty) for the 
retrieved parameters, extracting plausible profiles, consistently with the ground observations. Poor precisions and lack of some 
measurements do not prevent the feasibility of the retrieval, even if deteriorate the final accuracy. The method is tested on data 
from a measurement site in Cagliari (Italy) and results (namely of precipitable water and atmospheric profiles of water vapour and 
temperature) are compared versus atmospheric radiosoundings for the same site.
Finally we introduce how the method can also be straightforwardly applied for addressing the other questions that we have raised 
above, measuring the variation of entropy as a consequence of the ingestion of further information from different observations. This 
work has been partially funded by the FP7 COSMEMOS project (COoperative Satellite navigation for MEteo-marine Modelling and 
Services - www.cosmemos.eu).
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Let us consider the state of the atmosphere described by the values of N physical quantities at L different 
levels above the Earth surface. Once some physical observables y are measured, giving results collectively 
indicated by ỹ, the problem consists in finding the probability distribution for the possible N×L components 
of the atmospheric state “vectors” x. Let us indicate such a distribution as p(x| ỹI), where I denotes all the 
available information other than the measurements results. Applying the Bayes theorem we have
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where p(x |I) represents the prior distribution, for the state x and the denominator term denotes the prior for 
the observed results ỹ, which divides the corresponding conditional probability given the state x.
By discretization over a dataset, assigning the same probability to all the possible possible states and 
imposing the normalization of the probability P(xi | ỹ I) all over the possible states of the set {xi}:

It is necessary to assume some relationship between the atmospheric state x and the measured observables, 
as basis for the explicit calculation of the distribution p(ỹ | xI) and we assume linear dependencies, in 
decreasing order of  the correlation strength:

All the realignment parameters entering these models are determined by best fit procedures on the set of available MERRA data and 
the corresponding ground observations. 
Once the best estimate for all the models parameters is found, the probability distributions in the factorization (8) coincide with those 
of the residuals, well represented by normal distributions centred on the model values and variances given by the mean square 
residuals.
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Thus for any given set of observations ỹ, the value wi≡p(ỹ|xi) can be 
computed. It represents the statistical weight for the atmospheric state 
xi, whose posterior probability is easily calculated as:

Once this probability is computed for any state of the prior set, the most likely state as well as the subset of most 
plausible states whose cumulative probability just exceeds the desired threshold t  can be straightforwardly 
selected. Since the posterior probability for a state xi directly transfers to any of its components xij, the distribution 
for the values of each physical quantity (H, T  or e) at a given atmospheric level can be also calculated from the 
weights wi

Scatter plots of PW best estimates vs balloon measured values for the whole 2011 year, 00:00 time, using only the basic ground 
measurements (left panel),adding also the GNSS tropospheric delay (central panel) and using the Bevis technique (right panel)

Retrieved profiles of water vapor pressure and temperature, using only surface 
measurements (above) and including the GNSS measurement (below). Date: 
2011/02/01 time: 00:00

Retrieved profiles of water vapor pressure, and temperature, using only 
surface measurements (above) and including the GNSS measurements 
(below). Date: 2011/10/07 time: 12:00 

Posterior distribution for PW on 
2011/10/07 time 12:00, compared to 
the prior distribution and the value 
measured by balloon on the same day 
and time

Mean entropy over a whole year 
(2011) of the distributions of 
temperature, geopotential height 
and water vapour pressure for all 
the considered atmospheric levels
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