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EMITTED
DRIVERS SECTOR SUBSTANCES EFFECT IMPACT

Biodiversity

V Acidification v Ve
| “}'{/‘ Forest product
/‘\ shift in supporting

\ } v i "l’ yield losses

“»:r‘” voc:s ’ | _ :

A ol’ vices ol
\

utrophication
o
GDP/capita } ‘,‘. \4“
\ A\ Black N Vl‘
"\‘ carbon \ /"\\
/}\\ \~"Ground-level l’t‘l&

Population

i

Shift in Regulatory
Services (water

provsion etc)

C“mate‘ \\ Shift in Cultural
' change

Services (amenity
value etc)

)
|
Technological
efficiency

By Johan Kuylenstierna CH, '



Global Temperature and Carbon Dioxide
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« Concentrations have reached 400
ppm in 2014
« Contribution to present-day total
greenhouse effect is estimated in
~20% (Schmidt et al., 2010)
« CO2 is a basic nutrient required

for plant growth
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N in the atmosphere has increased globally
since the 1940s as a result of anthropogenic

activities
Nitrogen is a basic nutrient required for

Emission of NOx and
NH3 in China since
1980 and main sources
(Liu et al. 2013)

growth, and most natural plant systems are

N-limited

Increased N deposition in the last 70 years
has caused negative effects e.qg.
eutrophication and acidification as well as
positive effects e.g. increasing forest
growth

Due to successful control measures, N
emissions have declined by 25% since
1990 in Europe while N deposition has
increased by 60% by 1980 in China
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Emission of NOx and
NMVOC in Europe since
1990 (EMEP 2008)
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Surface ozone
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 Powerful phytotoxic gas I del 2 0 ~;
« Doubled since the pre-industrial age zg ] *”
« Current rise 0.5-2% a year 10 ;
 Uncertainty in future scenarios depends on

efficiency of control measures over precursors (Paoletti, 2007)

High ozone sensitivity
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Simulating the effects of ozone on vegetation
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Ambient

Simulating the effects of ozone on vegetation

Higher ozone

Optimal nutritional condition
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Nutritional imbalance condition

Hypothesis 1
Accolerations of
New leaf development

ompensation
Mitigating O, induced
decline of CO, uptake

Hypothesis 2
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Helping the acquisition
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Use of the antiozonant
etylenediurea
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Ozone impacts on GPP

Reduction in carbon assimilation was more related to stomatal ozone flux
than to ozone concentration.

Stomatal O3 flux
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Fig. 2 Wavelet coberence analysis to look the temponal correlations between the residuaks of gros primary productivity (GPP) and

| pzone concentration (4, ¢) or stomatal ozone deposition (b, d) for the Lindcove site. The colors for power values are from blue (low tem-

poral ¢orrelations with GPP) to ned (high tem poral correlations with GPP). The thick black lineina and bindicates the cone of influence
that delimits the region not influenced by edge effects. Black broken boxes show examples of strong correlation (denoted by red color
in¢, d) between low GPP values and high ozone concentrations Days of the year (DOY), days after January 20th of year2010.

Fares et al (2013 GCB



Ozone impacts on water loss from
stomata
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Fig. 4. Time course of stomatal conductance, expressed as percentage (+58D) of the maximum recorded in contral {open symbols, § nmolmal=! 04)
and ozonated (full symbols, 110 ol mol™" ©3) leaves of drbutus wiedo scedlings, after dissection of the main kal vein at time 0 {arrow).
Measurements were performed at day 140 after the end of a %0-d fumigation. Capital letters and thick lines indicate phases of incar variation, whose
slopes are compared in Tahle 1.

(Paoletti 2005)



Change of the value compared to control (%)

Ozone impacts on the carbon/water balance
of global temperate deciduous broadleaf
forests
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* Ozone-induced stomatal sluggishness, i.e.,

a delay in stomatal responses to fluctuating
stimuli, can change the carbon and water
balance of forests

« Ozone can decrease water use efficiency,

.e., the ratio of net CO, gain to
transpiration, of temperate deciduous
forests up to 20% when ozone-induced
stomatal sluggishness is considered, and
up to only 5% when the stomatal
sluggishness is neglected
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Hoshika et al (2015)
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Hy COST

FP1204 Functional traits of urban trees in relation to their
InUrbs air pollution mitigation potential
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* Only deciduous oaks considered, ** no data available

Figure 3. Selection criteria listed for the most common wrban tree species. (a) Water-use efficiency (WUE) taken from Wang et al.
(2013) and other sources; (b) shading capacity calculated as leaf avea index x relative leaf abundance throughout the vear (based on
Tiwary et al. 2016) x crouwn width/tree height (based om https:/fwww.horticopia.com/hortpiplindex.sheml); (c) PM removal
efficiency based on relative numbers given by Yang et al. (2015) as described in the text; (d) humped isoprene and monoterpene
. emission potentials under standard conditions (based on units of micrograms per grams dry weight per hour; Karl et al. 2009); and
; & (2) allergenicity calculated as pollination duration x intensity x toxicity (Carifianos et al. 2016). All values except WUE are scaled
Y between lowest and highest values obtained in the dataset.

Grote et al. Frontiers in Ecology and the Environment, 2016



IJUFRO - International Conference

Actions for Sustainable Forest Ecosystems
under Air Pollution and Cllmate Change

22 26 October, 2017 Tokyo Japan

http://web.tuat.ac.jp/~iufro-tokyo2017/Home.html

3rd Asian Air Pollution Workshop (AAPW-3) will be hold at
the same venue (afternoon 20 - morning 22 October)
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